Awesome Azure Openai Llm Overview
A curated list of 🌌 Azure OpenAI, 🦙 Large Language Models (incl. RAG, Agent), and references. [code] https://github.com/kimtth/azure-openai-llm-cookbook
🏠 Home · 🔥 Feed · 📮 Subscribe · ❤️ Sponsor · 😺 kimtth/awesome-azure-openai-llm · ⭐ 364 · 🏷️ LLM
Azure OpenAI + LLM 
Curated resources on Azure OpenAI, Large Language Models (LLMs), and applications.
🔹Brief each item on a few lines as possible.
🔹Capturing a chronicle and key terms of that rapidly advancing field, ordered by date.
🔹The dates are based on the first commit, article publication, or paper version 1 issuance.
🔹GitHub links (with star counts); others are articles or papers.
🔹Disclaimer: Please be aware that some content may be outdated.
Contents
- Section 1: RAG
- Section 2: Azure OpenAI
- Section 3: LLM Applications
- Section 4: Agent
- Section 5: Semantic Kernel & DSPy
- Section 6: LangChain & LlamaIndex
- Section 7: Prompting & Finetuning
- Section 8: Challenges & Abilities
- Section 9: LLM Landscape
- Section 10: Surveys & References
- Section 11: AI Tools & Extensions
- Section 12: Datasets
- Section 13: Evaluations
Section 1 🎯: RAG
Section 2 🌌: Azure OpenAI
- Microsoft LLM Framework
- Microsoft Copilot
- Azure AI Search & Azure AI Services
- Microsoft Research
- Reference Architecture & Samples
Section 3 🌐: LLM Applications
- LLM Frameworks
- LLM Applications
- Caching, UX
- Proposals & Glossary: e.g., Vibe Coding, Context Engineering
- Robotics
- Awesome Demo
Section 4 🤖: Agent
Section 5 🏗️: Semantic Kernel | DSPy
- Semantic Kernel: Micro-orchestration
- DSPy: Optimizer frameworks
Section 6 🛠️: LangChain | LlamaIndex
- LangChain Features: Macro & Micro-orchestration
- LangChain Agent & Criticism
- LangChain vs Competitors
- LlamaIndex: Micro-orchestration & RAG
Section 7 🧠: Prompting | Finetuning
- Prompt Engineering
- Finetuning: PEFT (e.g., LoRA), RLHF, SFT
- Quantization & Optimization
- Other Techniques: e.g., MoE
- Visual Prompting
Section 8 🏄♂️: Challenges | Abilities
- AGI Discussion & Social Impact
- OpenAI Products & Roadmap
- Context Constraints: e.g., RoPE
- Trust & Safety
- LLM Abilities
Section 9 🌍: LLM Landscape
- LLM Taxonomy
- LLM Collection
- Domain-Specific: e.g., Software development
- Multimodal
Section 10 📚: Surveys | References
- LLM Surveys
- Business Use Cases
- Building LLMs: from scratch
- LLMs for Korean & Japanese
- Learning and Supplementary Materials
Section 11 🧰: AI Tools | Extensions
Section 12 📊: Datasets
Section 13 📝: Evaluations
Legend 🔑
ref
: external URLdoc
: archived doccite
: the source of commentscnt
: number of citationsgit
: GitHub linkx-ref
: Cross reference- 📺: YouTube or video
- 💡 or 🏆: recommendation
Contributor 👀
ⓒ https://github.com/kimtth
all rights reserved.
Updated: 2025/07/02